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Abstract: - In this paper stationary properties of queueing network with exponentially distributed service 
times are investigated provided that an input flow is controlled by a Markov chain. We consider two cases. In 
the case, where we have one node only, a generating function of a stationary distribution is obtained. The form 
of the generating function is a matrix version of the Takacs formula. In the second case, a network with 1r >  
service nodes is considered. For a multivariate service process the condition of a stationary regime existence 
and a correlation matrix are found.  
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1 Introduction 
There is a great potential for using queueing 
network models in the performance analysis of 
computer and communication networks. Their 
structure is determined by the probabilistic 
characteristics of input flows and data processing 
algorithms. It is necessary to find their 
characteristics to optimize them, and to develop the 
corresponding control algorithms. This is 
particularly important at the stage of network design 
since it is necessary to obtain estimates of basic 
network performance measures. 

For many mathematical models describing 
probabilistic structure of real systems, there has 
been obtained using queueing theory large number 
of analytical and numerical results characterizing 
the performance of these systems. But classical 
queueing models do not assume any external 
intervention in a working process. 

In reality there are many systems with the 
primary feature of their control capability during 
operation, since in this case a s ignificant 
improvement in characteristics can be achieved, for 
example, reducing the queues length, increasing 
throughput or decreasing the operational expenses. 
The criteria of quality control, depending on t he 
objectives of the study, are the various 
characteristics of the queueing models: system 
performance, the average number of customers in 
the system, the average queue length, the average 
sojourn time of customers in the system, the average 
waiting time, the probability of loss, a system load 
factor or the average idle time of devices etc., as 

well as various economic indicators related to these 
characteristics. 

Development and research of analysis 
techniques for queueing networks with controlled 
input flow are actual directions of development of 
the queueing networks theory. In particular, special 
class of stochastic processes, named switching 
processes, was introduced by V.V. Anisimov ([1], 
[2], [3]). This class is a suitable tool for modelling 
of the control procedure of local model 
characteristics. Another control technique is 
connected with MAP (Markovian arrival process) 
and BMAP (batch Markovian arrival process) inputs 
(see, for example, [6], [15], [16], etc.). Models with 
a controlled input flow were studied also in [4], [8], 
[10], [11], [12], [17], [18], etc. Problems of analysis 
of queueing networks with input rates, dependent on 
time or on the state of the model are of considerable 
interest. Works [1], [2], [3], [13], [14], etc. are 
devoted to elaboration and development of methods 
for studying of this class of queueing systems and 
networks. 

The main model we consider is a queueing 
network consisting of r  service nodes. Each 
network node is a queueing system and it consists of 
infinite number of servers. Therefore if a customer 
arrives at such a system, then it begins processing 
immediately. Input flow arriving at the network is 
controlled by a Markov process. We define a service 
process in the network as an r -dimensional 
stochastic process ( )1( ) ( ),..., ( ) 'rQ t Q t Q t= , 0t ≥ , 
where ( )iQ t , 1,2,...,i r= , is the number of 
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customers at the i -th node at time t , symbol ( ) '⋅  
stands for a transposition operator. 

In this paper we study a stationary regime for 
such multi-channel networks in two cases. In 
Section 2 we consider one-dimensional case, where 
the network has the only service node. In this case a 
generating function of the stationary distribution for 
the process ( )Q t , 0t ≥ , is obtained. In Section 3 the 
network with 1r >  service nodes is studied. 
Formulas for the first and second moments of 
service process in stationary regime are found. 
 
 
2 Case of Controlled System with One 
Service Node 
Firstly, let us consider the case of a single node. 

Let ( )tη  be a homogeneous continuous time 
Markov chain with a finite set of states 

{ }1,2,...,S r=  and 
1

r

ijA = λ  be its infinitesimal 
matrix. It is assumed that the instants of customers 
arrivals to the system are the same as jump instants 

nt , 1,2,...n = , of ( )tη . A customer arrived to the 
system immediately begins to be served anywhere 
on a free server. The service time is distributed 
exponentially with parameter µ . In accordance with 
notations introduced above, let us denote the 
number of busy servers in the system at instant t  by 

( )Q t . For the process ( )Q t , 0t ≥ , the following 
result takes place. 

Theorem 1. If the controlling Markov chain 
( )tη  is ergodic, then for any i S∈  and 1,2,...j =  

{ }( )

1
lim / (0) , (0) 1 ( 1) 'Q t n

t n
E z i Q j z

∞

→∞
=

η = = = + − π ×∑  

( )( ) 1

1

( ) 1
n

k

A k I A −

=

 × ∆ λ + µ − ∏ , 1z ≤ , (1) 

where ( )1' ,..., rπ = π π  is an ergodic distribution for 

( )tη ; ( )
1

r

i ij∆ λ = λ δ  is a diagonal matrix ( ijδ  is 

the Kronecker delta), 
1

r

ijI = δ  is an identity matrix, 

( )1' ,..., rλ = λ λ , i ij
j i≠

λ = λ∑ , 1,2,...,i r= , 1 is an r -

dimensional vector-column with unit entries. 
Proof. Let 

( ) { }( ), / (0) , (0) 0Q t
i t z E z i QΦ = η = = , (2) 

1,2,...,i r= , 1z ≤ , be a generating function of the 
customers number in the system at time 0t ≥  if at 
the initial instant the system is empty and the 
controlling chain is in the state i . Then 

{ }( ) / (0) , (0)Q tE z i Q jη = = =  

( )1 (1 ) ,
jt

iz e t z−µ = − − Φ   
and  

{ } ( )( )lim / (0) , (0) lim ,Q t
it t

E z i Q j t z
→∞ →∞

η = = = Φ . (3) 

Since the functions ( ),i t zΦ , 1,2,...,i r= , satisfy 
the equation system 

( ), it
i t z e−λΦ = +  

( ) ( )

0

, 1 (1 )i

t
u t u

ij j
j i

e t u z z e du−λ −µ −

≠

 + λ Φ − − − ∑∫ ,   (4) 

the existence of limits (3) follows from Markov 
renewal theory ([9], sect. 12.6). 

Let us introduce 

( ) ( )
0

, ,st
i is z e t z dt

∞
−ϕ = Φ∫ , Re( ) 0s > , (5) 

Laplace transform for the functions ( ),i t zΦ , 0t ≥ , 
1,2,...,i r= . Then the system (4) can be written as 
( ) ( ), 1i is s zλ + ϕ = +  

( ) ( ), ( 1) ,ij j ij j
j i j i

s z z s z
≠ ≠

+ λ ϕ + − λ ϕ + µ∑ ∑ , 

or  
( ) ( ), 1sI A s z− ϕ = +  

( ) ( )( 1) ( ) ,z A s z+ − ∆ λ + ϕ + µ , (6) 

where ( ) ( ) ( )( )1' , , ,..., ,rs z s z s zϕ = ϕ ϕ . For 
Re( ) 0s >  we find from (6): 

( ) ( ) 1,s z sI A −ϕ = − ×  

( ) ( ){ }1 ( 1) ( ) ,z A s z× + − ∆ λ + ϕ + µ . (7) 

Substituting consecutively s k+ µ , 
1,2,..., 1k n= − , instead of s  in (7), we obtain: 

( ) ( ) 1,s z sI A −ϕ = − ×  

( )( ){ 1 11 ( 1) ( ) ( ) 1 ... ( 1)nz A s I A z− −× + − ∆ λ + µ + − + + − ×  

( )( )
1

1 1

1

( ) ( ) 1 ( 1)
n

n

k

A k s I A z
−

− −

=

 × ∆ λ + µ + − + − × ∏  

( )( )
1

1

1

( ) ( )
n

k

A k s I A
−

−

=

 × ∆ λ + µ + − × ∏  

( ) ( )}( ) ,A s n z× ∆ λ + ϕ + µ  (8) 
for 1,2,...n = . 

It is not difficult to show that for any 1z ≤  

( )( )
1

1

0 1

1 ( ) ( )
n

n

n k

z A k s I A
−∞

−

= =

 − ∆ λ + µ + − < ∞ ∑ ∏ , 

where ⋅  is Euclidean matrix norm. Therefore, 
based on [7] (sect. 5.6) we find from (8): 
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( ) 1( , )s z sI A −ϕ = − ×    (9) 

( ) ( )( ) 1

0 1

1 ( ) ( ) 1
n

n

n k

I z A k s I A
∞

−

= =

  × + − ∆ λ + µ + −   
∑ ∏ . 

Since the controlling chain ( )tη  is ergodic, then 

( ) 1

0
lim
s

s sI A −

→
− = Π ,  (10) 

where Π  is a matrix whose rows coincide with the 
ergodic distribution ( )1,..., rπ = π π .  

From (9), (10) we find: 

0
lim ( , ) 1
s

s s z
→

ϕ = +  

( ) ( )( ) 1

0 1

1 ( ) 1
n

n

n k

z A k I A
∞

−

= =

 + − Π ∆ λ + µ − ∑ ∏ . 

The theorem is proved. 
Equation (1) is a m atrix version of the Takacs 

formula ([20], p. 159). Notice also, that formula (9) 
contains the Laplace transform of the probability 
characteristics for the service process in the 
transient regime. 
 
 
3 Case of Network with Many Service 
Nodes 
Let us now consider a queueing network consisting 
of 1r >  nodes. At servicing nodes a common input 
flow of customers arrives. This flow is controlled by 
a Markov chain ( )tη  according to the following 
algorithm. As before, the instants of customers 
arrivals are the same as jump moments nt , 

1,2,...n = , of the chain ( )tη . If the chain ( )tη  
jumps into state i  at the instant nt , the customer 
numbered 1 arrives for service into the i -th node. 
There it occupies a f ree server for the time 
distributed exponentially with parameter iµ . After 
service in the i -th node the customer arrives to the 
j -th node with probability ijp , 1,2,...,j r= , and 

leaves the network with probability 
1

1
r

ij
j

p
=

−∑ . 

1

r

ijP p=  is a switching matrix of the network. 
As before, denote the number of occupied 

servers in the i -th node at instant 0t ≥  by ( )iQ t , 
1,2,...,i r= , ( )1( ) ' ( ),..., ( )rQ t Q t Q t= . If there exists 

a stationary regime for the queueing network, we 
will denote the number of occupied servers in the i -
th node in the stationary regime by iQ , 1,2,...,i r= , 

( )1' ,..., rQ Q Q= . 
Let ( ) ( )1 1 1' ,..., ,...,r r ra a a= = λ π λ π , 1

ia −  be the 
mean time between two consecutive hits to the state 

i  of the controlling chain ( )tη  provided that it is 
ergodic. 

For functions 
{ }1( ) ( ) / (0) , (0) 0,..., (0) 0ij j rA t E Q t i Q Q= η = = = , 

, 1,2,...,i j r= , we introduce their Laplace 
transforms: 

0

( ) ( )st
ij ija s e A t dt

∞
−= ∫ , Re( ) 0s > , 

1
( ) ( )

r

ijA s a s= . 

The following result holds. 
Тheorem 2. If the controlling Markov chain 

( )tη  is ergodic and the spectral radius of the 
switching matrix P  is strictly less than 1, then a 
stationary regime for the service process ( )Q t , 

0t ≥ , exists, and 
1) i i iEQ = θ µ , 1,2,...,i r= ,              (11) 
( )1' ,..., rθ = θ θ  is the solution of the balance 

equation    ' ' 'a Pθ = + θ ; 
2) ( )i j ijEQ Q − δ =  

1 0

( ) ( ) ( ) ( )
r

m mi mj mj mi
m

a A t p t A t p t dt
∞

=

 = + ∑ ∫ ,       (12) 

where 
1

( ) ( ) exp( )
r

ijP t p t Bt= = , ( )( )B P I= ∆ µ − , 

( )1' ,..., rµ = µ µ , ( )
1

r

ij∆ µ = µδ . 
The proof needs an auxiliary result. 
Lemma 1. The matrix ( )A s , Re( ) 0s > , can be 

represented in the explicit form via the model 
parameters as follows: 

( ) ( )( )1 1( ) ( )A s sI A A sI B− −= − ∆ λ + − .      (13) 
Proof. Let us introduce generating functions in 

the same way as in (2): 
( ) ( )1, ,..., ,i r it z z t zΦ =Φ =  

{ }1 ( ) ( )
1 1... / (0) , (0) 0,..., (0) 0rQ t Q t

r rE z z i Q Q= ⋅ ⋅ η = = = , 

0t ≥ , 1z ≤ , ( )1,..., rz z z= . 
Functions ( ),i t zΦ , 1,2,...,i r= , satisfy the 

following equation system of Markov renewal type: 
( ), e it

i t z −λΦ = +    (14) 

( )
10

, 1 ( )(1 )i

t r
u

im m mj j
m i j

e t u z p t u z du−λ

≠ =

 
+ λ Φ − − − − 

 
∑ ∑∫ , 

1,2,...,i r= . 
From (14) we obtain Markov renewal equations 

for functions ( )ijA t , , 1,2,...,i j r= : 

( )
0

( ) ( )i

t
u

ij im mj mj
m i

A t e A t u p t u du−λ

≠

 = λ − + − ∑∫ .  (15) 

System (15) can be solved in terms of Laplace 
transforms.  
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Let  

( )
0

( )st
ij ijp s e p t dt

∞
−= ∫ , Re( ) 0s ≥ , 

 ( )
1

( )
r

ijP s p s=  , 
be the Laplace transform for transient probabilities 

( )ijp t  of Markov chain which is defined by the 
following infinitesimal ( 1) ( 1)r r+ × +  matrix: 



1 1, 1

, 1

0 ...0

r

r r r

p
B

B
p

+

+

µ 
 
 =  µ
  
 



. 

The state with a number 1r +  is an absorbing 
one. 

Using Laplace transforms, system (15) can be 
represented in the form: 

( ) ( ) ( ) ( ) ( )sI A A s A P s− = ∆ λ + .    (16) 
From the Kolmogorov differential equations for 
( )ijp t  we obtain: 

 ( ) 1( )P s sI B −= − . 
Substitution of this formula in (16) gives (13). 
Proof of Theorem 2. 
Subsequently, point 1 of theorem 2 is conclusion 

of (13) and Tauberian theorems for Laplace 
transforms. Indeed, we can write 

1 2

0

1 2

...
lim ( ) ... ... ... ...

...

r

s

r

EQ EQ EQ
sA s

EQ EQ EQ
↓

 
 = = 
 
 

 

( )( ) 1 1( ) ( )A I P − −= Π ∆ λ + − ∆ µ =  

( ) 1 1( ) ( )I P − −= Π∆ λ − ∆ µ =  

1 1 2 2

1 1 2 2

...
... ... ... ...

...

r r

r r

θ µ θ µ θ µ 
 =  
 θ µ θ µ θ µ 

. 

We now proceed to prove point 2 of theorem 2. 
Let us denote second moments of the process 

( )1( ) ' ( ),..., ( )rQ t Q t Q t=  by ( )m
ijD t : 

( )m
ijD t =  

( ){ }1( ) ( ) / (0) , (0) 0,..., (0) 0i j ij rE Q t Q t m Q Q= − δ η = = = . 

From (14) it follows that the functions ( )m
ijD t , 

, , 1,2,...,m i j r= , 0t ≥ , satisfy the system of 
Markov renewal equations: 

( )m
ijD t =  

( ) ( )
0

( )m

t
u k

mk ij ki kj
k m

e D t u A t u p t u−λ

≠

= λ − + − − +∑∫  

( ) ( )kj kiA t u p t u du+ − −  ,  (17) 

, , 1,2,...,m i j r= , 0t ≥ . 
In order to analyse system (17), we introduce the 

Laplace transforms of ( )m
ijD t : 



0

( ) ( )
m st m

ij ijD s e D t dt
∞

−= ∫ , 

0

( ) ( ) ( )m st
ij mi mjd s e A t p t dt

∞
−= ∫ , Re( ) 0s > , 

  ( )1
( ) ( ),..., ( )

r
ij ij ijD s D s D s

′
= , 

( )1( ) ( ),..., ( )r
ij ij ijd s d s d s ′= , , , 1,2,...,m i j r= . 

Note that functions ( )ijA t  are defined by Laplace 

transforms (13), therefore ( )m
ijd s  are known. 

Now, (17) can be written in a vector-matrix form 
in terms of Laplace transforms: 

( ) ( )ijs D s∆ λ + =  

( ) ( )( )( ) ( ) ( ) ( ) ( )ij ij jiA D s A d s d s= ∆ λ + + ∆ λ + + , 

, 1,2,...,i j r= . 
Taking into account (10) and Tauberian theorems 

for Laplace transforms, we find: 



0

( )
lim ( )

( )

i j ij

ij
s

i j ij

EQ Q
sD s

EQ Q
↓

 − δ
 

= = 
 − δ 

  

( )( )( ) (0) (0)ij jiA d d= Π ∆ λ + + =  

( )
1 1 2 2

1 1 2 2

...
... ... ... ... (0) (0)

...

r r

ij ji

r r

d d
π λ π λ π λ 
 = + 
 π λ π λ π λ 

. 

The last expression is another form of (13). 
Theorem 2 is proved. 
 
 
4 Conclusion 
Comparison of (11), (12) with the results from [11] 
shows that the service process for the network with 
controlled input has similar limit properties to the 
service process in the [ ]| | rGI M ∞ -network. 
Recurrent input flow at the  i -th node is formed by 
a sequence of return instants of controlling chain  

( )tη  into the i -th state. 
The obtained results allow to solve modeling and 

optimization problem for complex systems such as 
mobile networks, distributed computer networks, 
automobile traffic flows, call-centers. 
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Note that in the case when the service rates iµ  
depend on n  (the number of series) and 

lim ( ) 0i in
n n

→∞
µ = µ ≠ , 1,2,...,i r= , 

the networks operates in heavy traffic regime. With 
this condition it is possible to approximate the 
service process by a G aussian process with its 
characteristics written via the network parameters. 
Such an approximation of some multi-channel 
stochastic networks was considered, for example, in 
[13], [14]. In these papers for multi-channel 
queueing networks in heavy traffic regime we 
develop asymptotic methods of investigation which 
are based on the approximation of jump-type service 
processes of calls by continuous Gaussian 
processes. 
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